

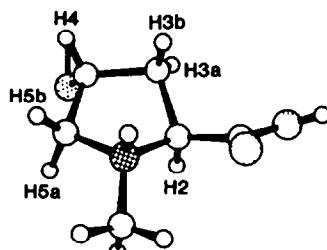
4-HYDROXY-N-METHYLPROLINE ANALOGUES IN *MELALEUCA* spp.

GRAHAM P. JONES, BODAPATI P. NAIDU, LESLIE G. PALEG, EDWARD R. T. TIEKINK* and MICHAEL R. SNOW*

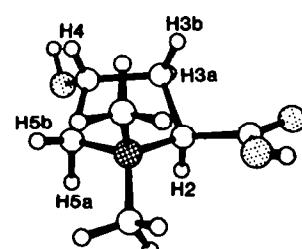
Department of Plant Physiology, Waite Agricultural Research Institute and *Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia

(Received 7 April 1987)

Key Word Index—*Melaleuca*; Myrtaceae; (−)-(2S, 4R)-1-methyl-4-hydroxy-pyrrolidine-2-carboxylic acid; 4-hydroxy-N-methylproline; (−)-(2S, 4R)-1,1'-dimethyl-4-hydroxypyrrrolidine-2-carboxylic acid; 4-hydroxy-N,N'-dimethylproline; betonicine.


Abstract—4-hydroxy-N-methylproline and 4-hydroxy-N,N'-dimethylproline have been identified in the aqueous extracts of *Melaleuca* spp. Characterization of the two compounds is discussed.

Whilst using ¹H NMR to measure the accumulation of glycinebetaine in a range of native South Australia flora [1] it was observed that a specimen of *Melaleuca lanceolata* contained a high concentration of an N-methyl hydroxyproline derivative. Subsequent studies have shown that a number of species belonging to the genus *Melaleuca* accumulated this compound and another hydroxyproline analogue. The levels of these compounds in plant tissue respond to environmental stress (Naidu, B. P., Jones, G. P., Paleg, L. G. and Poljakoff-Mayber, A., unpublished data) suggesting that they may be important in determining the drought and/or salinity resistance of these species. Furthermore, the occurrence of these compounds together with proline and N-methylproline, at different levels in different *Melaleuca* species holds promise for their use in chemotaxonomic studies. The compounds were isolated by ion-exchange chromatography and identified as (−)-(2S, 4R)-1-methyl-4-hydroxypyrrrolidine-2-carboxylic acid (4-hydroxy-N-methylproline, 1) and (−)-(2S, 4R)-1,1'-dimethyl-4-hydroxypyrrrolidine-2-carboxylic acid (4-hydroxy-N,N'-dimethylproline, betonicine, 2) by ¹H and ¹³C NMR and by comparison with authentic compounds. X-ray crystallographic analyses of the two compounds enabled unambiguous confirmation of their identities. The conformations of 1 and 2 determined by X-ray diffraction studies of their respective hydrochlorides are shown below. Oxygen and nitrogen atoms are lightly and heavily shaded respectively. The orientation of the N-methyl group with respect to the carboxyl group in 1 is the same as that predicted by an earlier ¹H NMR study [5].


1 and 2 have both been found in higher plants [2-4] and algae [5-7] at levels less than 0.5% dry weight. In the present case levels of 1 of >4% dry weight were measured in *M. lanceolata* and >1.4% dry weight of both 1 and 2 in leaves of *M. uncinata*. ¹H and ¹³C NMR spectral data for 1 are consistent with that reported previously [5]. The ¹H NMR spectrum of 2, as the hydrochloride (90 MHz, D₂O, pH 1.0), closely resembled that of 1 and showed peaks at δ3.19 (3H, N-Me) and δ3.47 (3H, N-Me). A complex multiplet at δ2.25-3.00 (2H) was attributed to H-3a and H-3b. H-5a and H-5b each gave a doublet of doublets centred at δ3.62 and δ4.11 respectively as part of an AMX pattern involving H-4 where $J_{5a,5b} = 13.0$ Hz,

$J_{5a,4} = 4.4$ Hz and $J_{5b,4} = 6.0$ Hz. A multiplet at approximately δ4.7, which was significantly obscured by the solvent peak, was ascribed to H-2 and H-4. When the pH was adjusted to 4, a part of this multiplet moved upfield to form a broad doublet at δ4.36 (1H), $J = 11$ Hz which was ascribed to H-2.

The ¹³C NMR spectrum of 2 (22.5 MHz, D₂O, pH 1.0) shows a singlet at δ171.0 (−COOH), two doublets at δ77.5 and δ76.8 (C-2, C-4), two triplets at δ69.1 (C-5) and δ38.1 (C-3) and two quartets at δ57.6 and δ52.0 (N-Me, N'-Me). At pH 4.0 the carboxyl signal moved downfield to δ173.0 and the signals associated with C-2 and C-4 merged to form a single doublet at δ76.9.

1

2

It is noted that the melting points of the hydrochlorides for both **1** and **2** are significantly lower than those reported previously [2, 5] and this is attributed to the formation of different crystalline modifications.

EXPERIMENTAL

Extraction and isolation. Leaves of *M. lanceolata* (450 g fr. wt) were homogenized and extracted with 70% aq MeOH (3 x 1). The extracts were filtered through muslin and combined. The filtrate was then clarified by centrifugation, concd in *vacuo* and again centrifuged. The supernatant was applied to a column of Dowex 50W (H⁺ form, 50–100 mesh, column size 3 x 65 cm) and after washing the resin with water (2 l) to remove neutral species, the amino acid fraction containing **1** was eluted with 4 M HCl (1 l). The eluent was taken to dryness in *vacuo*. The reddish-brown solid was taken up in hot dry EtOH (60 ml) to which was added dry Et₂O to ppt. the hydrochloride of **1** as pale pink crystals (yield 7.5 g). A small sample of this material (200 mg) was recrystallized from MeOH–Et₂O to give colourless prisms suitable for X-ray crystallographic studies with mp 160–161° (lit. 183–184° (dec) [5]), $[\alpha]_D^{25} - 59.8^\circ$ (H₂O; c 1.1) (lit. –58.9°; H₂O; c 1.2) [5]. A sample of the hydrochloride of **1** (200 mg) was converted to the free amino acid on a Dowex 50 W [H]⁺ column by elution with 2 M NH₄OH. The elute was dried in *vacuo* and the colourless residual solid was recrystallized from MeOH–Et₂O giving **1** as colourless needles (120 mg), mp 239° (dec) (lit. 238° (dec) [5]), $[\alpha]_D^{25} - 82.2^\circ$ (H₂O; c 1.0) (lit. –82.7°; H₂O; c 1.1 [5]), FAB-MS (M + H)⁺ 146.

M. uncinata leaf tissue (350 g) was extracted in a similar manner. After the initial ion exchange chromatography stage, however, **1** and **2** were sepd on a second Dowex 50W column (50–100 mesh; H⁺, 3 x 65 cm) with a stepwise gradient of HCl from 0 to 1 M in 0.3 M steps (2 l) collecting 100 ml fractions. The

separation was monitored by TLC analysis (precoated silica gel plates using EtOH–conc NH₄OH, 85:15) using iodine and Dragendorff's reagent for visualizing the spots. **1** was eluted at the end of the 0.6 M HCl step whereas **2** was eluted with 0.9 M HCl. Fractions containing either **1** or **2** were pooled, dried in *vacuo* and recrystallized from MeOH–Et₂O yielding 650 mg of **1** and 620 mg of **2** as the hydrochlorides. The physical properties of **1** were the same as the material isolated from *M. lanceolata*. Crystals of **2** as the hydrochloride, suitable for X-ray crystallographic analysis (X-ray crystallographic data for the two compounds have been deposited with the Cambridge Crystallographic Data Centre) are colourless prisms, mp 204–205° (lit 224° (dec) [2]), $[\alpha]_D^{25} - 26.4^\circ$ (H₂O; c 1.1) (lit. –24.8°; H₂O; c 3.6 [2]), FABMS (M + H)⁺ 160.

Acknowledgement—We thank the Australian Research Grants Scheme and the University of Adelaide Postgraduate Scholarship Scheme for financial support.

REFERENCES

1. Poljakoff-Mayber, A., Symon, D. E., Jones, G. P., Naidu, B. P. and Paleg, L. G. (1987) *Aust. J. Plant Physiol.* (in press)
2. Goodson, J. A. and Clewer, H. W. B. (1919) *J. Chem. Soc.* 923.
3. Delaveau, P., Koudogbo, B. and Pousset, J. L. (1973) *Phytochemistry* **12**, 2893.
4. Morgan, J. W. W. (1964) *Chem. Ind.* 542.
5. Sciuto, S., Chillemi, R., Piatelli, M. and Impellizzeri, G. (1983) *Phytochemistry* **22**, 2311.
6. Blunden, G., Gordon, S. M., McLean, W. F. H. and Guiry, M. D. (1982) *Bot. Marina* **25**, 256.
7. Hori, K., Yamamoto, T., Miyazawa, K. and Ito, K. (1979) *Hiroshima Daigaku Seibutsu Kiyo* **18**, 65.